advancing learning, changing lives

Mark Scheme (Results) January 2010

GCE

GCE Chemistry (6CH04/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

January 2010
Publications Code UA022681
All the material in this publication is copyright
© Edexcel Ltd 2010

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
5	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
6	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question	Correct Answer	Reject	Mark
\mathbf{N} Number	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
20	C		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 1}(\mathrm{a})(\mathrm{i})$	$(\mathrm{pH}=)-\log \left[\mathrm{H}^{+}\right]$	Just "concentration of hydrogen ions" OR $(\mathrm{pH}=)-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ OR	$\mathbf{1}$		
	Accept Definition in words brackets (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration")	- log H^{+}			
Base 10 does not have to be there, but reject					
"In"				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}(\mathrm{a})(\mathrm{ii})$	$(\mathrm{pH}=-\log 0.0100)=2(.00)$	If any units given	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21 (b)(i)	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{2}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$ OR $\begin{equation*} \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \tag{1} \end{equation*}$ ALLOW [HA] for $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ and $\left[\mathrm{A}^{-}\right]$for $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$in rearranged expression Accept [H^{+}] for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } 1.75 \times 10^{-7}$ OR $\begin{equation*} \therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.18(3) \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ $\begin{equation*} \mathrm{pH}=3.38 / 3.4 \tag{1} \end{equation*}$ ignore sf except one sf Third mark TE from $\left[\mathrm{H}^{+}\right]$only if pH less than 7 N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3) Assumption assumes that degree of ionisation of the acid is very small/negligible OR $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {eqm }}=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {initial }}$ OR $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ OR all of the hydrogen ions come from the acid / ignore hydrogen ions from the water IGNORE any references to temperature	3.37 / 3 /3.39 / a correct pH value with units just "weak acid" / just "partially dissociates" / acid does not dissociate / [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$ constant $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] /} \\ & {\left[\mathrm{H}^{+}\right]=[\text {salt }]} \tag{1} \end{align*}$	4

Question Number	Acceptable Answers	Reject	Mark
21 (b)(ii)	First mark:		2
	(Dilution/addition of water) shifts the equilibrium		
	$\mathrm{CH}_{3} \mathrm{COOH} \quad \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} /$		
	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$		
	to the right		
	OR		
	the above stated in words such as: degree of dissociation increases/		
	proportion of dissociation increases/		
	more dissociation (as the ethanoic acid is diluted)		
	Second mark:		
	so the $\left[\mathrm{H}^{+}\right]$is greater than expected/ so the decrease in $\left[\mathrm{H}^{+}\right]$is less than expected / so that the decrease in $\left[\mathrm{H}^{+}\right]$is less than that for hydrochloric acid	Reject just a reference to a 0.5 increase in pH for $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	
	Each mark is a stand alone mark. ALTERNATIVE ROUTE.	compared with a 1.0 increase in pH for $\mathrm{HCl}(\mathrm{aq})$	
	First mark:		
	$\left[\mathrm{H}^{+}\right]=\int K_{\mathrm{a}} \times[\mathrm{HA}] \quad \text { OR }\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)^{1 / 2}$		
	OR		
	$\mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{a}}-1 / 2 \log [\mathrm{HA}]$		
	Second mark:		
	use of mathematical expression given (e.g. $\left[\mathrm{H}^{+}\right]$affected by factor of $1 / \sqrt{ } 10$ on dilution OR substitution of numerical values into the equation)		
	(1)		
	IGNORE: any comments or calculations relating to $\mathrm{HCl}(\mathrm{aq})$		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i)	These marks are stand alone. Maintains an almost constant pH / resists change(s) in pH for small addition of H^{+}or OH^{-}ions (N.B. both ions needed) / for small additions of acid or alkali / for small additions of acid or base IGNORE any references to named buffer mixtures	"resists small change(s) in pH " OR "pH does not change"	2

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii)	citric acid		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21 (c)(iii)	First mark: (buffer contains) reservoir of HA and A^{-} OR (buffer contains) large concentrations of [HA] and [A] OR both equations: $\mathrm{HA} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+} \text {and } \mathrm{NaA} \rightarrow \mathrm{Na}^{+}+\mathrm{A}^{-}$ Second mark: (Addition of alkali/base) $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$ OR description/equations to show that H^{+}reacts with OH^{-}(to form $\mathrm{H}_{2} \mathrm{O}$) and more acid dissociates (to replace H^{+}) Third mark: (Addition of acid) $\mathrm{A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HA}$ OR A^{-}reacting with H^{+}in any context described in words (e.g. by reference to weak acid equilibrium) Fourth mark: the ratio of $\left[A^{-}\right] \div[\mathrm{HA}]$ hardly changes / the ratio of $[\mathrm{HA}] \div\left[\mathrm{A}^{-}\right]$hardly changes OR [A-] nor [HA] changes significantly (1)	$\begin{align*} & \frac{\text { JUST }}{\text { and }} \mathrm{NaA} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{A}^{-} \\ & \mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \\ & \text {without correct } \tag{1}\\ & \text { description } \end{align*}$	4

Question Number	Acceptable Answers	Reject	Mark
22 (a) QWC	Each mark is a stand alone mark. First mark: hydrogen bonds in both ethanoic acid and ethanol OR no hydrogen bonds in ethanal Second mark: hydrogen bonds are stronger than van der Waals'/ dipole-dipole/London/dispersion/ induced dipole / permanent dipole /intermolecular forces (in ethanal) OR hydrogen bonds are the strongest/strong intermolecular forces Third mark: ethanoic acid has more electrons/ethanoic acid has the most electrons OR ethanoic acid is dimeric OR ethanoic acid forms dimers OR description of ethanoic acid dimers (N.B. In the context of dimerisation, ignore statement that "ethanoic acid forms two hydrogen bonds per molecule") OR ethanoic acid is more polar because of having more oxygen atoms	any reference to hydrogen bonding in ethanal just references to ethanol and ethanoic acid forming H bonds with water references to breaking covalent bonds Just "ethanoic acid has more hydrogen bonds than ethanol"	3

Question Number	Acceptable Answers	Reject	Mark
22 (b)(i)	(Test): 2,4-dinitrophenylhydrazine /Brady's (1) reagent/2,4-dnp/ 2,4-DNP/2,4-DNPH (Result):yellow precipitate /orange precipitate /red precipitate	1,2-DNP etc/ hydrazine / /2,4- dinitrophenolhydrazine /2,4- dinitrophenylhydrazone	
ALLOW: 'solid' or 'crystals' in lieu of precipitate	(1)		

Question Number	Acceptable Answers	Reject	Mark
22 (b)(ii)	(Warm with) Fehling's (solution) / Benedict's (solution) red precipitate/brown precipitate/brick-red precipitate ALLOW "solid" ALLOW "red $\mathrm{Cu}_{2} \mathrm{O}$ " ALLOW yellow/orange solid for Benedict's test Penalise omission of "solid" once only in parts (b)(i) and (b)(ii) OR (Warm with) Tollens' (reagent) silver (mirror)/black(solid) (N.B. here, solid not required) OR (Warm with) ammoniacal silver nitrate (solution) silver (mirror)/ black / dark-grey (solid) (N.B. here, solid not required) 2nd mark CQ on correct reagent or a near miss Penalise omission of "solid" once only in (b)(i) and (b)(ii)	acidified potassium dichromate(VI) / manganate(VII) iodoform reaction (0) just "red due to Cu^{+}", "red solid due to Cu^{3+} " (0)	2

Question Number	Acceptable Answers	Reject	Mark
22 (c)(i)	IGNORE any dipoles shown Check curly arrows are all double-headed in mechanism. (If all arrows are single-headed, can only score intermediate mark.) Accept: arrow to an H^{+}instead of an $\mathrm{H}-\mathrm{CN}$ for third mark. [It is not necessary to show the lone pairs.] IGNORE any equations which generate CN^{-}ions	 arrow from N in CN -	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2}$ (c)(ii)	With HCN alone, insufficient CN^{-} OR KCN provides (sufficient) CN^{-} OR KCN increases the concentration of CN		
	ALLOW "nucleophile" instead of CN^{-}	Just "HCN is a weak acid" OR HCN "is too weak a nucleophile"	$\mathbf{1}$
IGNORE any subsequent comments about the role of the CN ion			

Question Number	Acceptable Answers	Reject	Mark
$22 \text { (c)(iii) }$ QWC	These are stand alone marks First mark: attack from both sides OR attack from above and below Second mark: (gives) racemic mixture / (gives) equal amounts of each isomer / (gives) equal amounts of each enantiomer	attack on a (planar) carbocation OR attack on a (planar) intermediate OR $\mathrm{S}_{\mathrm{N}} 1$ OR $\mathrm{S}_{\mathrm{N}} 2$ "planar product"	2

Question Number	Acceptable Answers	Reject	Mark
23 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) [H^{+}] and [propanone] (virtually)		
	constant		
	so that the $\left[\mathrm{H}^{+}\right]$and [propanone] do not affect		
	the rate (1)		
	Second mark:		
	the [I_{2}] / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the $\left[I_{2}\right]$ changes scores (2)		
	OR		
	"only the I_{2} concentration changes" scores (2) BUT		
	"only the iodine changes" scores (1)		

Question Number	Acceptable Answers	Reject	Mark
23 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone Second mark (mark consequentially): slope/gradient of line doubles ALLOW "rate doubles" OR slope or gradient changes/increases/decreases by same factor ALLOW "rate changes/increases/decreases by same factor" NOTE: may suggest a different procedure:- First mark: monitor/measure [propanone] over time Second mark (mark consequentially): plot [propanone] v. time graph and state that t $1 / 2$ constant		2

Question Number	Acceptable Answers	Reject	Mark
23 (a)(iii)	I_{2} not involved in rate-determining step/ I_{2} not involved in slow(est) step / H^{+}and propanone involved in rate-determining step/ H^{+}and propanone involved in slow(est)step so there must be another step where I_{2} is involved/ so there must be a fast step where I_{2} is involved BUT:- I_{2} not involved until after the rate-determining step/ I_{2} not involved until after the slow(est) step ALLOW H^{+}involved in rate-determining step and is regenerated as it is a catalyst (in another step)	I_{2} involved before ratedetermining/slowest step (0)	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3}$ (b)(i)	$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR any equations with HA $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{ALLOW}:^{\mathrm{NaHCO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}}$ $\mathbf{1}$ OR $\mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ IGNORE any correct or any incorrect state symbols		

Question Number	Acceptable Answers	Reject	Mark
23 (b)(ii)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{NaOH} \\ & \rightarrow \mathrm{CHI}_{3}+\mathrm{CH}_{3} \mathrm{COONa}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ IGNORE any correct or any incorrect state symbols CHI_{3} on RHS of equation remaining species correct balanced equation NOTE: balancing mark is CQ on all species correct Accept correct ionic equation (i.e. Na^{+}omitted) NOTE: If CH_{3} l, can only access second mark above		3

Question Number	Acceptable Answers	Reject	Mark
24 (a)	$K_{p}=\frac{p\left(\mathrm{H}_{2}\right)^{3} p(\mathrm{CO})}{p\left(\mathrm{CH}_{4}\right) p\left(\mathrm{H}_{2} \mathrm{O}\right)}$	(1)	[
	Brackets not required		$K_{p}=\frac{p\left(\mathrm{H}_{2}\right)^{3}+p(\mathrm{CO})}{p\left(\mathrm{CH}_{4}\right)+p\left(\mathrm{H}_{2} \mathrm{O}\right)}$

Question Number	Acceptable Answers	Reject	Mark
24 (b)(i)	No effect (as K_{p} dependent only on temperature)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24 (b)(ii)	(Since $K_{\mathrm{p}}=\frac{x\left(\mathrm{H}_{2}\right)^{3} x(\mathrm{CO}) \times \frac{\boldsymbol{P}^{T^{2}}}{{ }^{4}}}{x\left(\mathrm{CH}_{4}\right) x\left(\mathrm{H}_{2} \mathrm{O}\right)} \quad \boldsymbol{P}_{\mathrm{T}}{ }^{2}$ to maintain K_{p} constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_{T}{ }^{2}$ overall) First mark: EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase Second mark: any mention of $\times P_{T}^{2} \mathrm{OR} \times \frac{P_{T}{ }^{4}{ }^{4}}{\bar{P}_{T}^{2}}$ ALLOW P for P_{T} NOTE: If Le Chatelier quoted, statements such as: "Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules"		2

Question Number	Acceptable Answers	Reject	Mark
24 (b)(iii)	Reaction takes place on surface of the catalyst		(1)
	Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction)	(1)	
	NOTE: an answer such as "... depends on the availability of active sites on catalyst surface"		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (\mathbf { i })}$	production (of hydrogen) forms CO_{2} OR production (of hydrogen) forms a Greenhouse gas OR production (of hydrogen) forms CO OR CO_{2} is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous	methane produced (0)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4}$ (d)(ii)	$2 \mathrm{KHCO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ALLOW multiples	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 4 (e)}$	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) IGNORE any comments relating to cost	references to atom economy	$\mathbf{1}$		
dangers of					
maintaining high					
pressures				\quad	
:---					

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5}(\mathrm{a})$	$\Delta S_{\text {total }}^{\mathrm{o}}$ is positive / $\Delta S_{\text {total }}^{\circ}$ > 0		
with or without superscript			
NOTE: This mark may be awarded from			
answer to Q25(b)(v)			
Accept			
ΔG° is negative	Just "the entropy is positive"	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5}$ (b)(i)	$(+) 27.3$ and $(+) 87.4\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ IGNORE incorrect units		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
25 (b)(ii)	$\begin{align*} \Delta S_{\text {sys }}^{0} & =(2 \times 87.4)-\{(4 \times 27.3+(3 \times 205.0)\} \tag{1}\\ & =-549.4 /-549\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Correct answer with or without correct units IGNORE any wrong units Accept TE from (b)(i) NOTE: +549/+549.4 scores (1) Check working NOTE: $1^{\text {st }}$ mark: for $\mathrm{x} 2, \mathrm{x} 4$ and x 3 $2^{\text {nd }}$ mark: for (products - reactants), with correct arithmetic		2

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iii)	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }}=-\frac{\Delta \mathrm{H}}{\mathrm{~T}} \\ & =-\left(-1648 \times 10^{3}\right) \div 298(.15)\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & =(+) 5530\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$ OR $\begin{equation*} =(+) 5.53 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{equation*}$ NOTES: - Correct answer, with or without working, scores - If $5530\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ given, IGNORE any subsequent incorrect attempts to convert it to a value in $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ IGNORE s.f. except one s.f.	Just (+) 5.53 with no units OR $(+) 5.53 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iv)	$\begin{aligned} & \Delta \mathrm{S}_{\text {total }}=(-549.4)+(+5530) \\ & \quad=+4980.6 /+4981 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{OR} \quad+\quad \mathrm{kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & +4.981 \end{aligned}$ (1) for value (1) for correct sign and units IGNORE s.f. except one s.f. Accept TE from (b)(ii) and (b)(iii)	Just the formula: $\Delta S_{\text {total }}=\Delta S_{\text {sys }}^{\circ}+\Delta S_{\text {surr }}$	2

Question Number	Acceptable Answers	Reject	Mark
25 (b)(v)	($\Delta S_{\text {system }}$ is negative):		3
	as loss of disorder as gas \rightarrow solid		
	OR		
	more order as gas \rightarrow solid		
	OR		
	as decrease in entropy as gas \rightarrow solid		
	(1)		
	($\Delta \mathrm{S}_{\text {surr }}$ is positive):		
	(heat) energy released (increases kinetic energy and hence movement of the surrounding molecules)	Just "reaction is exothermic"	
	(1)		
	$\Delta \mathrm{S}_{\text {total }}$ is positive because $\Delta \mathrm{S}_{\text {surr }}$ is (numerically) greater than $\Delta S_{\text {sys }}$	$\Delta S_{\text {total }}$ is negative (0) for third scoring point	
	$\Delta S_{\text {surr }}$ "outweighs" $\Delta \mathrm{S}_{\text {sys }}$		
	OR		
	$\Delta S_{\text {sur }}$ sufficiently large so that $\Delta S_{\text {total }}$ is positive		

Question Number	Acceptable Answers	Reject	Mark
26 (a)	(IR spectrum of X)		4
	peak at $3400\left(\mathrm{~cm}^{-1}\right)$		
	MAY BE ANNOTATED ON SPECTRUM		
	ALLOW anything in the Data Booklet range which is 3200 to $3750\left(\mathrm{~cm}^{-1}\right)$	X is a phenol (0)	
	X has an O-H (group) OR X is an alcohol (1)		
	(From the chemical information)		
	X is primary or secondary (alcohol) OR X is not tertiary (alcohol) OR X is any two from:		
	butan-1-ol, butan-2-ol, (2)-methylpropan-1-ol		
	Y is an aldehyde or a ketone ALLOW " Y is a carbonyl"		
	NOTE RE THIRD/FOURTH SCORING POINTS:		
	If just state that X is butan-1-ol with no justification but then go on to state Y is butanal, give CQ mark		
	OR		
	If just state that X is butan- 2 -ol with no justification but then go on to state Y is butanone, give (1) CQ mark		
	OR If just state that \mathbf{X} is (2)-methylpropan- 1 -ol with no justification		
	but then go on to state Y is (2)-methylpropanal, give CQ mark		
	NOTE: These Part (a) marks may be awarded from answers to either Part (a) or Part (b)		

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA022681 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

